# Computer Graphics Worksheet Ray-Geometry Intersection Algorithms

Dr. Sergey Kosov Jacobs University Bremen

## Problem 1. Points

Let  $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$  be points in  $\mathbb{R}^3$ .

- a) Calculate the length of three sides of the triangle with vertices  $\vec{a} = (1, -1, 2)^{\mathsf{T}}$ ,  $\vec{b} = (3, 3, 8)^{\mathsf{T}}$  and  $\vec{c} = (2, 0, 1)^{\mathsf{T}}$ .
- b) Using cosine law, show that the triangle from (a) has a right angle.
- c) Find the angle  $\alpha$  adjacent to vertex  $\overrightarrow{a}$  in the triangle with vertices  $\overrightarrow{a} = (2, -1, -1)^{\mathsf{T}}$ ,  $\overrightarrow{b} = (0, 1, -2)^{\mathsf{T}}$  and  $\overrightarrow{c} = (1, -3, 1)^{\mathsf{T}}$ .

# Problem 2. Vectors

Given two vectors  $\vec{u}$ ,  $\vec{v}$  of length 1, provide two versions of a formula computing a vector  $\vec{t}$  that is perpendicular to  $\vec{u}$  and lying on the uv-plane. Both versions can contain vector addition and subtraction, and...

- a) The first version of the formula should consist of only cross products.
- b) The second version of the formula should consist only of dot products.

Provide geometric interpretation of these formulas

## **Problem 3. Triangle primitive**

A triangle *T* is defined by its 3 vertices  $\vec{a}, \vec{b}, \vec{c}$ .

- a) Compute the barycentric coordinates of the center of mass of T
- b) Compute the barycentric coordinates of the incenter of T (center of the inscribed circle)

#### Problem 4. Ray-Surface Intersection

Given a ray  $\vec{r}(t) = \vec{o} + t \vec{d}$  with origin  $\vec{o} = (o_x, o_y, o_z)^T$  and direction  $\vec{d} = (d_x, d_y, d_z)^T$ , derive the equations to compare the parameter *t* for the intersection point(s) of the ray and the following implicitly represented surfaces:

- a) An infinite plane  $(\vec{p} \vec{a}) \cdot \vec{n} = 0$  through point  $\vec{a} = (a_x, a_y, a_z)^T$  with surface normal  $\vec{n} = (n_x, n_y, n_z)^T$ , where any point  $\vec{p} = (x, y, z)^T$  that satisfies the equation lies on the surface.
- b) A sphere  $(\overrightarrow{p} \overrightarrow{c}) \cdot (\overrightarrow{p} \overrightarrow{c}) = r^2$  with center  $\overrightarrow{c} = (c_x, c_y, c_z)^T$ , radius  $r \in \mathbb{R}$  where any point  $\overrightarrow{p} = (x, y, z)^T \in \mathbb{R}^3$  that satisfies the equation lies on the surface.
- c) A quadric  $ax^2 + by^2 + cz^2 + dxy + exz + fyz + gx + hy + iz + j = 0$ . • For this task you may want to represent the ray equation if form:
  - $x = o_x + td_x$  $y = o_y + td_y$  $z = o_z + td_z$

and then solve it for t

· Derive the ray-sphere intersection formula from it, as a special case

### Problem 5. Reflection Rays

Given a ray  $\vec{r}(t) = \vec{o} + t \vec{d}$  which hits a reflective surface at  $t = t_{hit}$ . The surface has the geometry normal  $\vec{n}$  at the hit point. Assume that both, the ray direction  $\vec{d}$  and the surface normal  $\vec{n}$  are normalised. Compute the ray  $\vec{I}(t)$  that has been reflected (assuming a perfect mirror reflection) by the surface.

# Problem 6. Snell's Law

- 1. Let us consider a 2-dimensional slice through a 2-layer dielectric material such that the half space of positive *y* coordinates lies in a medium where light travels at constant speed  $c_a$  and the half-space of negative *y* coordinates in a medium where light travels at constant speed  $c_b$ . Assuming that light travels between the 2 points  $P_a(2,3)$  and  $P_b(-1, -2)$  by crossing the interface between the two media at some point  $P_i(x_i,0)$ , write the expression for the time of travel as a function of  $x_i$ ,  $c_a$  and  $c_b$ .
- 2. According to Fermat's principle, light always travels between 2 points along the path with minimal time of travel. Write the equation that  $x_i$  must satisfy for the path taken between  $P_a$  and  $P_b$  to be valid.
- 3. Use the formulations you have computed above to re-derive Snell's law, which relates the refractive indices  $n_a$  and  $n_b$  to the angles of incidence and exitance of the light rays.

